Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If I1= displaystyle ∫ 0π (x textsin x/1 + textcos2 x)dx text, I2= displaystyle ∫ 0π x textsin4xdx then, I1 text:I2 is equal to
Q. If
I
1
=
∫
0
π
1
+
cos
2
x
x
sin
x
d
x
,
I
2
=
∫
0
π
x
sin
4
x
d
x
then,
I
1
:
I
2
is equal to
1945
220
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
3
:
4
10%
B
1
:
2
15%
C
4
:
3
55%
D
2
:
3
19%
Solution:
Given,
I
1
=
∫
0
π
1
+
(
cos
(
π
−
x
)
)
2
(
π
−
x
)
sin
(
π
−
x
)
d
x
(
∫
0
a
f
(
x
)
d
x
=
∫
0
a
f
(
a
−
x
)
d
x
)
=
π
∫
0
π
1
+
cos
2
x
s
in
x
d
x
−
∫
0
π
1
+
cos
2
x
x
s
in
x
d
x
2
I
1
=
π
∫
0
π
1
+
cos
2
x
s
in
x
d
x
=
2
π
∫
0
2
π
1
+
cos
2
x
s
in
x
d
x
⇒
I
1
=
π
∫
0
2
π
1
+
(
cos
)
2
x
s
in
x
d
x
=
π
∫
0
1
1
+
t
2
d
t
(
t
=
cos
x
)
=
[
π
tan
−
1
t
]
0
1
=
4
π
2
I
2
=
∫
0
π
(
π
−
x
)
(
sin
)
4
x
d
x
=
π
∫
0
π
sin
4
x
d
x
−
I
2
⇒
2
I
2
=
2
π
∫
0
π
/2
sin
4
x
d
x
=
2
π
⋅
4
3
⋅
2
1
⋅
2
π
⇒
I
2
=
16
3
π
2
Therefore,
I
1
:
I
2
=
4
1
:
16
3
=
4
:
3