Given, g(x)=x2+x−2
and 21(gof)(x)=2x2−5x+2 ⇒g(f(x))=4x2−10x+4 ⇒(f(x))2+(f(x))−2=4x2−10x+4
Now, it is necessary that f(x) should be linear polynomial expression,
so let f(x)=ax+b, then (ax+b)2+(ax+b)−2=4x2−10x+4 ⇒a2x2+(2ab+a)x+(b2+b−2) =4x2−10x+4
On comparing the coefficient of different kind of terms, we are getting a2=4 ⇒2ab+a=−10
and b2+b−2=4
So, a=±2,
then b=<br/><br/>{<br/><br/>−3,<br/><br/>2,if a=2 if a−2<br/><br/>
and these value satisfy the all above relations, so f(x)=2x−3 or −2x+2