Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If g(x) is the inverse of f(x) and f(x) has domain x ∈[1,5], where f(1)=2 and f(5)=10 then the values of ∫ limits15 f(x) d x+∫ limits210 g(y) d y equals
Q. If
g
(
x
)
is the inverse of
f
(
x
)
and
f
(
x
)
has domain
x
∈
[
1
,
5
]
, where
f
(
1
)
=
2
and
f
(
5
)
=
10
then the values of
1
∫
5
f
(
x
)
d
x
+
2
∫
10
g
(
y
)
d
y
equals
548
77
Integrals
Report Error
A
48
B
64
C
71
D
52
Solution:
y
=
f
(
x
)
⇒
x
=
f
−
1
(
y
)
=
g
(
y
)
d
y
=
f
′
(
x
)
d
x
∴
I
=
1
∫
5
f
(
x
)
d
x
+
1
∫
5
x
f
′
(
x
)
d
x
where y is 2 then
x
=
1
y is 10 then
x
=
5
∴
I
=
1
∫
5
(
f
(
x
)
+
x
f
′
(
x
)
)
d
x
=
x
f
(
x
)
∣
1
5
=
5
f
(
5
)
−
f
(
1
)
=
5
⋅
10
−
2
=
48