g(x)⋅g(y)=g(x)+g(y)+g(xy)−2….(1)
Put x=1,y=2, then g(1)⋅g(2)=g(1)+g(2)+g(2)−2 5g(1)=g(1)+5+5−2 4g(1)=8 ∴g(1)=2
Put y=x1 in equation (1), we get g(x)⋅g(x1)=g(x)+g(x1)+g(1)−2 g(x)⋅g(x1)=g(x)+g(x1)+2−2 [∵g(1)=2]
This is valid only for the polynomial ∴g(x)=1±xn….(2)
Now g(2)=5 (Given) ∴1±2n=5 [Using equation (2)] ±2n=4, ⇒2n=4,−4 ∴1±2n=5 [Using equation (2)] ±2n=4, ⇒2n=4,−4
Since the value of 2n cannot be −Ve.
So, 2n=4, ⇒n=2
Now, put n=2 in equation (2),
we get g(x)=1±x2 ∴x→3Lt(x)=x→3Lt(1±x2)=1±(3)2 =1±9=10,−8