Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If g(x)=∫0x cos 4t dt, then g(x+π ) is equal to
Q. If
g
(
x
)
=
∫
0
x
cos
4
t
d
t
,
then
g
(
x
+
π
)
is equal to
2597
227
KEAM
KEAM 2007
Integrals
Report Error
A
g
(
x
)
+
g
(
π
)
B
g
(
x
)
−
g
(
π
)
C
g
(
x
)
.
g
(
π
)
D
g
(
π
)
g
(
x
)
E
g
(
x
)
g
(
π
)
Solution:
∵
g
(
x
)
=
∫
0
x
cos
4
t
d
t
∴
g
(
x
+
π
)
=
∫
0
π
+
x
cos
4
t
d
t
=
∫
0
π
cos
4
t
d
t
+
∫
π
π
+
x
cos
4
t
d
t
=
I
1
+
I
2
⇒
I
1
=
g
(
π
)
and
I
2
=
∫
π
π
+
x
cos
4
t
d
t
⇒
I
2
=
∫
0
x
cos
4
(
y
+
π
)
d
y
=
∫
0
x
[
cos
(
π
+
y
)]
4
d
y
=
∫
0
x
cos
4
y
d
y
=
g
(
x
)