Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If G( vecg), H( vech) and P( vecp) are centroid, orthocenter and circumcenter of a triangle and x vecp+y vech+z vecg = 0 then (x, y, z) =
Q. If
G
(
g
)
,
H
(
h
)
and
P
(
p
)
are centroid, orthocenter and circumcenter of a triangle and
x
p
+
y
h
+
z
g
=
0
then
(
x
,
y
,
z
)
=
_____________
2249
206
MHT CET
MHT CET 2016
Vector Algebra
Report Error
A
1
,
1
,
−
2
9%
B
2
,
1
,
−
3
62%
C
1
,
3
,
−
4
24%
D
2
,
3
,
−
5
4%
Solution:
We know that, orthocentre, centroid and circumcentre of a triangle are collinear and centroid divides orthocentre and circumcentr in the ratio 2: 1
By using internally division,
2
+
1
2
p
+
1
h
=
g
⇒
2
p
+
h
−
3
g
=
0
But it is given
x
p
+
y
h
+
z
g
=
0
x
=
2
,
y
=
1
and
z
=
−
3