Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If function f(x) is differentiable at x = a, then displaystyle limx→ a (x2f(a)-a2f(x)/x-a) is :
Q. If function f(x) is differentiable at x = a, then
x
→
a
lim
x
−
a
x
2
f
(
a
)
−
a
2
f
(
x
)
is :
3226
226
AIEEE
AIEEE 2011
Continuity and Differentiability
Report Error
A
−
a
2
f
′
(
a
)
0%
B
a
f
(
a
)
−
a
2
f
′
(
a
)
0%
C
2
a
f
(
a
)
−
a
2
f
′
(
a
)
0
67%
D
2
a
f
(
a
)
+
a
2
f
′
(
a
)
33%
Solution:
x
→
a
lim
x
−
a
x
2
f
(
a
)
−
a
2
f
(
x
)
=
x
→
a
lim
1
2
x
f
(
a
)
−
a
2
f
′
(
x
)
=
2
a
f
(
a
)
−
a
2
f
′
(
a
)
Alter
x
→
a
lim
x
−
a
x
2
f
(
a
)
−
a
2
f
(
x
)
=
x
→
a
lim
x
−
a
x
2
f
(
a
)
−
a
2
f
(
a
)
+
a
2
f
(
a
)
−
a
2
f
(
x
)
=
x
→
a
lim
x
−
a
(
x
2
−
a
2
)
f
(
a
)
+
a
2
(
f
(
x
)
−
f
(
a
)
)
=
x
→
a
lim
(
x
+
a
)
f
(
a
)
−
a
2
{
(
x
−
a
)
f
(
x
)
−
f
(
a
)
}
=
2
a
f
(
a
)
−
a
2
f
′
(
a
)