f′(x)=sin2xsinx−xcosx, g′(x)=tan2xtanx−xsec2x
Now, dxd(sinx−xcosx)=xsinx>0 for 0<x≤1 ∴sinx−xcosx is an increasing function.
Also, at x=0, sinx−xcosx=0 ⇒0<x≤1, sinx−xcosx>0 ∴f(x)>0 for 0<x≤1 ∴f(x) is increasing on the interval (0,1].
Again, dxd(tanx−xsec2x)=−x⋅2sec2x⋅tanx<0
for 0<x≤1 ⇒tanx−xsec2x is an decreasing function.
Also at x=0, tanx−xsec2x=0 ⇒0<x≤1,tanx−xsec2x<0 g(x)<0 for 0<x≤1. ∴g(x) is decreasing in (0,1].