Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= begincases x+a, x ≤ 0 |x-4|, x>0 endcases and g(x)= begincasesx+1 , x<0 (x-4)2+b, x ≥ 0 endcases are continuous on R, then (gof) (2)+(f o g)(-2) is equal to :
Q. If
f
(
x
)
=
{
x
+
a
,
∣
x
−
4∣
,
x
≤
0
x
>
0
and
g
(
x
)
=
{
x
+
1
(
x
−
4
)
2
+
b
,
,
x
<
0
x
≥
0
are continuous on
R
, then
(
g
o
f
)
(
2
)
+
(
f
o
g
)
(
−
2
)
is equal to :
133
144
JEE Main
JEE Main 2022
Relations and Functions - Part 2
Report Error
A
-10
0%
B
10
20%
C
8
20%
D
-8
60%
Solution:
f
(
x
)
=
{
x
+
a
;
x
≤
0
∣
x
−
4∣
;
x
>
0
;
g
(
x
)
=
{
x
+
1
;
x
<
0
(
x
−
4
)
2
+
b
;
x
≥
0
For continuity
a
=
4
and
b
=
−
15
g
(
f
(
2
))
+
f
(
g
(
−
2
))
=
g
(
2
)
+
f
(
−
1
)
=
−
8