Given, f′(x)=(x−a)2n(x−b)2p+1 ∴ For maxima or minima
f '(x) = 0 ⇒(x−a)2n=0 or (x−b)2p+1=0 ⇒x=a and x=b
Now, f′(a−h)=[(a−h−a)2n.(a−h−b)2p+1] =h2n(a−b−h)2p+1
and f′(a+h)=[(a+h−a)2n.(a+h−b)2p+1] =h2n(a−b+h)2p+1
Thus, f '(x) does not change sign as x passes through 'a', so x is not a point of maximum or minimum.