g(x) is the inverse of f(x). ⇒g(x)=f−1(x) ...(i) ⇒f[g(x)]=x
Differentiating with respect to x, we get f′[g(x)]g′(x)=1 ⇒f′[g(1)]g′(1)=1 ⇒g′(1)=f′[g(1)]1 ... (ii) f(x)=x3+e2x ⇒f(0)=0+e0=1 ⇒0=f−1(1) ⇒g(1)=0 ...[From (i)]] ⇒g′(1)=f′(0)1 ...(iii) [From (ii)] f(x)=x3+e2x ⇒f′(x)=3x2+2e2x ⇒f′(0)=0+2e0=21 ...(iv) ⇒g′(1)=f′(0)1=2 ....[From (iii) and (iv)]