Given, f(x)=x3+bx2+cx+d ⇒f′(x)=3x2+2bx+c
(As we know, if ax2+bx+c>0 for all x ⇒a>0 and D<0 )
Now, D=4b2−12c=4(b2−c)−8c
(where b2−c<0 and c>0) ∴D=(−ve)ie,D<0 ⇒f′(x)=3x2+2bx+c>0
for all x∈(−∞,∞).
(as D<0 and a>0 )
Hence, f(x) is strictly increasing function.