Q.
If f(x)=x3+3x+4 and g is the inverse function of f then the value of dxd(g(g(x))g(x)) at x=4 equals
65
103
Continuity and Differentiability
Report Error
Solution:
dxd(g(g(x)))g(x))=(g(g(x)))2g(g(x))g′(x)−g(x)⋅g′(g(x))g′(x)
Now, f(x)=x3+3x+4 f(0)=4 OR g(4)=0 g′(4)=f′(0)1=31 f(−1)=0⇒g(0)=−1,
Put at x=4 dxd(g(g(x))g(x))=(g(g(4)))2g(g(4))⋅g′(4)−g(4)⋅g′(g(4))g′(4)=1(−1)(31)−0=−31