Q.
If f(x)=x3+3x+4 and g is the inverse function of f then the value of dxd(g(g(x))g(x)) at x=4 equals
123
104
Continuity and Differentiability
Report Error
Solution:
dxd(g(g(x))g(x)) at x=4 =(g(g(x)))2g(g(x))g′(x)−g(x)⋅g′(g(x))⋅g′(x)]x=4
Now, f(0)=4⇒f−1(4)=g(4)=0 and g′(4)=f′(0)1=31 f(−1)=0⇒f−1(0)=g(0)=−1 =(g(g(4)))2g(g(4))g′(4)−g(4)g′(g(4))g′(4)=(g(0))2g(0)⋅f′(0)1−0=1−1×31=3−1