Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=(x2 - [x2]/1 + x2 - [x2]) (where [.] represents the greatest integer part of x ), then the range of f(x) is
Q. If
f
(
x
)
=
1
+
x
2
−
[
x
2
]
x
2
−
[
x
2
]
(where
[
.
]
represents the greatest integer part of
x
), then the range of
f
(
x
)
is
1780
220
NTA Abhyas
NTA Abhyas 2020
Report Error
A
[0,1)
B
(
−
1
,
1
)
C
(
0
,
∈
f
t
y
)
D
[
0
,
2
1
)
Solution:
x
2
−
[
x
2
]
=
{
x
2
}
∴
f
(
x
)
=
1
+
{
x
2
}
{
x
2
}
=
1
+
{
x
2
}
1
+
{
x
2
}
−
1
=
1
−
1
+
{
x
2
}
1
∵
0
≤
{
x
2
}
<
1
⇒
1
≤
{
x
2
}
+
1
<
2
2
1
<
{
x
2
}
+
1
1
≤
1
⇒
−
2
1
>
1
+
{
x
2
}
−
1
≥
−
1
2
1
>
1
+
1
+
{
x
2
}
(
−
1
)
≥
0
⇒
Range of
f
(
x
)
∈
[
0
,
2
1
]