Given function, f(x)={log(1+x2)x2log(cosx),0,x=0x=0 ∵ LHL ( at x=0)=h→0limh2log(1+h2)log(cos(0−h))=1log(1)=0
and RHL ( at x=0 ) =h→0limh2log(1+h2)log(cosh)=1log(1)=0
and f(0)=0 ∴f(x) is a continuous at x=0.
Now, LHD (at(x=0)) =h→0lim−hlog(1+h2)(0−h)2log(cos(0−h))−0 =h→0lim−hlog(1+h2)h2log(cosh)=h→0limh×−h2log(1+h2)log(cosh) =0×−1log(1)=0
and RHD( at x=0) =h→0limhlog(1+h2)h2log(cosh) =h→0limh2log(1+h2)hlog(cosh)=0×1log(1)=0 ∴f(x) is differentiable at x=0