Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=x2+g prime(1) x+g prime prime(2) and g(x)=f(1) x2+x f prime(x)+f prime prime(x), then the value of f(4)-g(4) is equal to
Q. If
f
(
x
)
=
x
2
+
g
′
(
1
)
x
+
g
′′
(
2
)
and
g
(
x
)
=
f
(
1
)
x
2
+
x
f
′
(
x
)
+
f
′′
(
x
)
, then the value of
f
(
4
)
−
g
(
4
)
is equal to ______
1527
137
JEE Main
JEE Main 2023
Limits and Derivatives
Report Error
Answer:
14
Solution:
f
(
x
)
=
x
2
+
g
′
(
1
)
x
+
g
′′
(
2
)
f
′
(
x
)
=
2
x
+
g
′
(
1
)
f
′′
(
x
)
=
2
g
(
x
)
=
f
(
1
)
x
2
+
x
[
2
x
+
g
′
(
1
)
]
+
2
g
′
(
x
)
=
2
f
(
1
)
x
+
4
x
+
g
′
(
1
)
g
′′
(
x
)
=
2
f
(
1
)
+
4
g
′′
(
x
)
=
0
2
f
(
1
)
+
4
=
0
f
(
1
)
=
−
2
−
2
=
1
+
g
′
(
1
)
=
g
′
(
1
)
=
−
3
So
f
′
(
x
)
=
2
x
−
3
f
(
x
)
=
x
2
−
3
x
+
c
c
=
0
f
(
x
)
=
x
2
−
3
x
g
(
x
)
=
−
3
x
+
2
f
(
4
)
−
g
(
4
)
=
14