Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f (x) = x2 + 4x - 5 and A = [1&2 4&-3] then f (A) is equal to
Q. If
f
(
x
)
=
x
2
+
4
x
−
5
and
A
=
[
1
4
2
−
3
]
then f (A) is equal to
6036
185
Matrices
Report Error
A
[
0
8
−
4
8
]
25%
B
[
2
2
1
0
]
10%
C
[
1
1
1
0
]
15%
D
[
8
8
4
0
]
50%
Solution:
Given :
A
=
[
1
4
2
−
3
]
∴
A
2
=
A
.
A
=
[
1
4
2
−
3
]
[
1
4
2
−
3
]
=
[
1
+
8
4
−
12
2
−
6
8
+
9
]
=
[
9
−
8
−
4
17
]
Now,
f
(
x
)
=
x
2
+
4
x
−
5
∴
f
(
A
)
=
A
2
+
4
A
−
5
=
A
2
+
4
A
−
5
I
(I is a
2
×
2
unit matrix)
=
[
9
−
8
−
4
17
]
+
4
[
1
4
2
−
3
]
−
5
[
1
0
0
1
]
=
[
9
−
8
−
4
17
]
+
[
4
16
8
−
12
]
+
[
−
5
0
0
−
5
]
=
[
8
8
4
0
]