Given, f(x)=(2x)10=2101⋅x10
On differentiating w.r.t. x, we get f′(x)=210110x9
Again, differentiating, we get
f^{\prime \prime}(x)=\frac{1}{2^{10}} 10 \cdot 9 x^{8}
Similar, f(10)=210110! ∴ The given sum =2101[1+1!10+2!10⋅9+3!10⋅9⋅8+…+10!10!]W =2101[10C0+10C1+10C2+…+10C10] =210210=1[∵nC0+nC1+…+Cn=2