We have, f(x)=(x−1)(x−2)(x−3) f(x)=x3−6x2+11x−6
Given function is algebraic function so. it is continuous and difference in [0,4]
Now, f(4)=(4)3−6(4)2+11(4)−6 =64−96+44−6=6 f(0)=−6
Now, f′(x)=3x2−12x+11
by Lagrange's mean value theorem f′(c)=4−0f(4)−f(0) ⇒3c2−12c+11=46−(−6) ⇒3c2−12c+11=412 ⇒3c2−12c+11−3=0 ⇒3c2−12c+8=0 ⇒c=2×312±(−12)2−4(3)(8) =612±144−96=612±43 c=2±323∈[0,4)