Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=|x-1|+|x-2|+|x-3|, 2< x < 3 then f is
Q. If
f
(
x
)
=
∣
x
−
1∣
+
∣
x
−
2∣
+
∣
x
−
3∣
,
2
<
x
<
3
then
f
is
2193
195
AP EAMCET
AP EAMCET 2016
Report Error
A
an onto function but not one-one
B
one-one function but not onto
C
a bijection
D
neither one-one nor onto
Solution:
Given,
f
(
x
)
=
∣
x
−
1∣
+
∣
x
−
2∣
+
∣
x
−
3∣
⇒
f
(
x
)
=
⎩
⎨
⎧
6
−
3
x
,
4
−
x
,
x
,
3
x
−
6
,
x
<
1
1
<
x
<
2
2
<
x
<
3
x
>
3
.
When,
2
<
x
<
3
, then
f
(
x
)
=
x
So,
f
(
x
)
=
x
is one-one and onto function.
∴
f
(
x
)
is a bijective.