Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f ( x )= tan x +2 tan 2 x +3 tan 3 x +4 tan 4 x + ldots ldots ∞ where x ∈((-π/4), (π/4)) ∪((3 π/4), (5 π/4)), then number of solution(s) of the equation f(x)=2, is(are)
Q. If
f
(
x
)
=
tan
x
+
2
tan
2
x
+
3
tan
3
x
+
4
tan
4
x
+
……
∞
where
x
∈
(
4
−
π
,
4
π
)
∪
(
4
3
π
,
4
5
π
)
, then number of solution(s) of the equation
f
(
x
)
=
2
, is(are)
539
92
Sequences and Series
Report Error
A
1
B
2
C
3
D
4
Solution:
f
(
x
)
=
(
1
−
t
a
n
x
)
2
t
a
n
x
=
2
⇒
2
tan
2
x
−
5
tan
x
+
2
=
0
⇒
tan
x
=
2
1
,
2
(rejected)
∴
Number of solutions are 2 .