Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f'( x ) = tan -1(secx + tanx), -(π/2) < x < (π/2), and f(0 ) = 0, then f(1) is equal to :
Q. If
f
′
(
x
)
=
t
a
n
−
1
(
sec
x
+
t
an
x
)
,
−
2
π
<
x
<
2
π
, and
f
(
0
)
=
0
, then
f
(
1
)
is equal to :
2217
203
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
4
π
+
1
B
4
π
+
2
C
4
1
D
4
π
−
1
Solution:
f
′
(
x
)
=
t
a
n
−
1
(
sec
x
+
t
an
x
)
f
′
(
x
)
=
t
a
n
⋅
1
(
cos
x
1
+
s
in
x
)
=
t
a
n
−
1
(
1
−
t
an
2
x
1
+
t
an
2
x
)
=
t
a
n
−
1
(
t
an
(
4
π
+
2
π
)
)
<
b
r
/
>
∵
−
2
π
<
x
<
2
π
⇒
0
<
4
π
+
2
π
<
2
π
⇒
f
′
(
x
)
=
4
π
+
2
x
∴
f
(
x
)
=
4
π
.
x
+
4
x
2
+
c
∵
f
(
0
)
=
0
⇒
c
=
0
⇒
f
(
x
)
=
4
π
x
+
4
x
2
∴
f
(
1
)
=
4
π
+
1