Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=| sin x cos x tan x x3 x2 x 2 x 1 x | then displaystyle limx→1 (f (x)/x2) is equal to
Q. If
f
(
x
)
=
∣
∣
sin
x
x
3
2
x
cos
x
x
2
1
tan
x
x
x
∣
∣
then
x
→
1
lim
x
2
f
(
x
)
is equal to
3889
224
KCET
KCET 2012
Continuity and Differentiability
Report Error
A
0
36%
B
3
17%
C
2
24%
D
1
23%
Solution:
f
(
x
)
=
∣
∣
sin
x
x
3
2
x
cos
x
x
2
1
tan
x
x
x
∣
∣
Expand the determinant along the first row,
⇒
f
(
x
)
=
sin
x
(
x
3
−
2
x
)
−
cos
x
(
x
4
−
2
x
2
)
+
tan
x
(
x
3
−
2
x
3
)
⇒
x
2
f
(
x
)
=
x
s
i
n
x
(
x
2
−
2
)
−
cos
x
(
x
2
−
2
)
−
x
tan
x
∴
lim
x
→
0
x
2
f
(
x
)
=
lim
x
→
0
x
s
i
n
x
(
x
2
−
2
)
−
lim
x
→
0
cos
x
(
x
2
−
2
)
−
lim
x
→
0
x
tan
x
=
1
(
0
−
2
)
−
1
(
0
−
2
)
−
0
=
0