Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = begincases ( sin (p +1) + sin x/x) &, x < 0 q &, x = 0 (√x+x2 - √x/x3/2) &, x > 0 endcases is continuous at x = 0, then the ordered pair (p,q) is equal to :
Q. If
f
(
x
)
=
⎩
⎨
⎧
x
s
i
n
(
p
+
1
)
+
s
i
n
x
q
x
3/2
x
+
x
2
−
x
,
x
<
0
,
x
=
0
,
x
>
0
is continuous at
x
=
0
, then the ordered pair
(
p
,
q
)
is equal to :
4418
241
JEE Main
JEE Main 2019
Continuity and Differentiability
Report Error
A
(
2
5
,
2
1
)
7%
B
(
−
2
3
,
−
2
1
)
15%
C
(
−
2
1
,
2
3
)
13%
D
(
−
2
3
,
2
1
)
65%
Solution:
R
H
L
=
lim
x
→
0
+
x
2
3
x
+
x
2
−
x
=
lim
x
→
0
+
x
1
+
x
−
1
=
2
1
L
H
L
=
lim
x
→
0
x
s
i
n
(
p
+
1
)
x
+
s
i
n
x
=
(
p
+
1
)
+
1
=
p
+
2
for continuity
L
H
L
=
R
H
L
=
f
(
0
)
⇒
(
p
,
q
)
=
(
2
−
3
,
2
1
)