Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= sin ( log x), y=f((2 x+3/3-2 x)) and ((d y/d x))x=1=(a/b) cos ( log c), then find a+b+c .
Q. If
f
(
x
)
=
sin
(
lo
g
x
)
,
y
=
f
(
3
−
2
x
2
x
+
3
)
and
(
d
x
d
y
)
x
=
1
=
b
a
cos
(
lo
g
c
)
, then find
a
+
b
+
c
.
99
155
Limits and Derivatives
Report Error
Answer:
22
Solution:
f
(
x
)
=
sin
(
lo
g
x
)
⇒
f
′
(
x
)
=
cos
(
lo
g
x
)
⋅
x
1
...(i)
y
=
f
(
3
−
2
x
2
x
+
3
)
⇒
d
x
d
y
=
f
′
(
3
−
2
x
2
x
+
3
)
⋅
d
x
d
(
3
−
2
x
2
x
+
3
)
=
f
′
(
3
−
2
x
2
x
+
3
)
⋅
[
(
3
−
2
x
)
2
12
]
=
cos
[
lo
g
(
3
−
2
x
2
x
+
3
)
]
⋅
3
−
2
x
2
x
+
3
1
⋅
(
3
−
2
x
)
2
12
... [From (i)]
⇒
d
x
d
y
=
(
2
x
+
3
)
(
3
−
2
x
)
12
cos
[
lo
g
(
3
−
2
x
2
x
+
3
)
]
⇒
(
d
x
d
y
)
x
=
1
=
5
12
cos
(
lo
g
5
)
⇒
a
=
12
,
b
=
5
,
c
=
5
⇒
a
+
b
+
c
=
12
+
5
+
5
=
22