Given, f(x)=sin6x+cos6x+2sin3xcos3x
and I=0∫4πf(x)sin22xdx =0∫π4sin6x+cos6x+2sin3xcos3x4sin2xcos2xdx =0∫4πtan6x+2tan3x+14tan2xsec2xdx
Now, put tan3x=t, so at x=0,t=0 and at x=4π t=1 and 3tan2xsec2xdx=dt
So, I=340∫1t2+2t+1dt=340∫1(t+1)2dt =34(t+1)−1∣∣01=3−4[21−1]=32