Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = begincases ( sin 3x/e2x - 1) &; x ≠ 0 k - 2 ; x = 0 endcases is Continuous at x = 0, then k =
Q. If
f
(
x
)
=
{
e
2
x
−
1
s
i
n
3
x
k
−
2
;
x
=
0
;
x
=
0
is
Continuous at x = 0, then k =
7521
170
KCET
KCET 2019
Continuity and Differentiability
Report Error
A
2
7
27%
B
2
3
38%
C
3
2
24%
D
5
9
12%
Solution:
f
(
x
)
=
{
e
2
x
−
1
s
in
3
x
;
k
−
2
;
x
=
0
x
=
0
Since f is continuous at x = 0
⇒
l
i
m
x
→
0
f
(
x
)
=
f
(
0
)
l
i
m
x
→
0
e
2
x
−
1
s
in
3
x
=
k
−
2
⇒
l
i
m
x
→
0
2
x
e
2
x
−
1
×
2
x
l
i
m
x
→
0
3
x
s
in
3
x
×
3
x
=
k
−
2
⇒
2
3
=
k
−
2
⇒
k
=
2
3
+
2
=
2
7
∴
k
=
2
7