Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=( sin -1x/√1-x2) and g(x)=e sin -1x, then ∫f(x)g(x)dx is equal to
Q. If
f
(
x
)
=
1
−
x
2
s
i
n
−
1
x
and
g
(
x
)
=
e
s
i
n
−
1
x
,
then
∫
f
(
x
)
g
(
x
)
d
x
is equal to
4283
201
KEAM
KEAM 2007
Integrals
Report Error
A
e
s
i
n
−
1
x
(
sin
−
1
x
−
1
)
+
c
50%
B
e
s
i
n
−
1
x
+
c
23%
C
e
(
s
i
n
−
1
x
)
2
+
c
7%
D
e
2
s
i
n
−
1
x
+
c
17%
E
e
s
i
n
−
1
x
sin
−
1
x
+
c
17%
Solution:
Given that,
f
(
x
)
=
1
−
x
2
s
i
n
−
1
x
and
g
(
x
)
=
e
s
i
n
−
1
x
∴
∫
f
(
x
)
g
(
x
)
d
x
=
∫
1
−
x
2
s
i
n
−
1
x
e
s
i
n
−
1
x
d
x
Let
sin
−
1
x
=
t
and,
1
−
x
2
1
d
x
=
d
t
⇒
∫
f
(
x
)
g
(
x
)
d
x
=
∫
t
e
t
d
t
=
t
e
t
−
e
t
+
c
=
e
s
i
n
−
1
x
(
sin
−
1
x
−
1
)
+
c