Given, f(x)=sin−1(1+x22x)
On differentiating w.r.t. x, we get f′(x)=1−(1+x22x)21×dxd(1+x22x) =(1−x2)21+x2×(1+x2)22(1−x2) =1+x22×∣1−x2∣1−x2 =⎩⎨⎧1+x22−1+x22,If ∣x∣<1If ∣x∣>1 ∴f′(x) does not exist for ∣x∣=1, i e, x=±1
Hence, f(x) is differentiable on R−{−1,1}