Given f(x)=sin−1(1+9x2×3x)
Let 3x=tan(t)⇒t=tan−1(3x)
So, f(x)=sin−1(1+tan2(t)2tan(t))
We know that, sin(2t)=1+tan2(t)2tan(t) ⇒f(x)=sin−1(sin(2t)) ∴f(x)=2t=2tan−1(3x) ⇒dxdf(x)=1+(3x)22×3x⋅loge3
At x=21,dxdf=1+(321)22×321⋅loge3 =21×3×loge3 =3×loge3