Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= prodk = 1999 (x2 - 47 x + k) , then product of all real roots of f(x)=0 is
Q. If
f
(
x
)
=
∏
k
=
1
999
(
x
2
−
47
x
+
k
)
, then product of all real roots of
f
(
x
)
=
0
is
3556
173
NTA Abhyas
NTA Abhyas 2020
Complex Numbers and Quadratic Equations
Report Error
A
550
!
B
551
!
C
552
!
D
999
!
Solution:
Consider
x
2
−
47
x
+
k
=
0
For real roots,
4
7
2
−
4
k
≥
0
⇒
k
≤
552
∴
k
=
1
,
2
,
3
…
.
,
552
Product of real roots
=
1
×
2
×
3
×
4
×
…
..
×
552
=
552
!