Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = logx2 ( log x), then f'(x) at x = e is
Q. If
f
(
x
)
=
lo
g
x
2
(
lo
g
x
)
, then
f
′
(
x
)
at
x
=
e
is
3685
198
COMEDK
COMEDK 2015
Continuity and Differentiability
Report Error
A
0
11%
B
1
16%
C
e
1
33%
D
2
e
1
40%
Solution:
f
(
x
)
=
lo
g
x
2
(
lo
g
x
)
⇒
f
(
x
)
=
2
1
[
lo
g
x
(
lo
g
x
)
]
[
∵
lo
g
a
n
b
=
n
1
lo
g
a
b
]
⇒
f
(
x
)
=
2
1
[
l
o
g
x
l
o
g
(
l
o
g
x
)
]
(
∵
lo
g
a
b
=
l
o
g
a
l
o
g
b
)
⇒
f
′
(
x
)
=
2
1
[
(
l
o
g
x
)
2
l
o
g
(
x
)
d
x
d
[
l
o
g
(
l
o
g
(
x
)
)
]
−
l
o
g
(
l
o
g
x
)
d
x
d
l
o
g
x
]
=
2
1
[
(
l
o
g
x
)
2
l
o
g
(
x
)
l
o
g
x
1
×
x
1
−
l
o
g
(
l
o
g
x
)
x
1
]
=
2
1
[
(
l
o
g
x
)
2
x
1
−
x
l
o
g
(
l
o
g
(
x
)
)
]
⇒
f
′
(
x
)
=
2
1
[
x
×
(
l
o
g
x
)
2
1
−
l
o
g
(
l
o
g
(
x
)
)
]
⇒
f
′
(
e
)
=
2
1
[
e
(
l
o
g
e
)
2
1
−
l
o
g
(
l
o
g
(
e
)
)
]
=
2
1
[
e
1
−
0
]
=
2
e
1