Given, f(x)=loge(6−∣∣x2+x−6∣∣)
The function f(x) is defined, if (6−∣∣x2+x−6∣∣)>0 ⇒∣∣x2+x−6∣∣<6 ⇒−6<x2+x−6<6
if x2+x−6<6 ⇒x2+x−12<0 ⇒(x+4)(x−3)<0 ∴x∈(−4,3) ...(i)
Now, if −6⇒x2+x>0 ⇒x(x+1)>0 ∴x∈(0,∞) ...(ii)
From Eqs. (i) and (ii), we get x∈(0,3) ∵f(x) has only two integral values. ∴x=1,2