f(x)=sinx3loge(1+x2tanx) This function is continuous at x=0, then x→0limsinx3loge(1+x2tanx)=f(0) ⇒x→0limx3−3!x9+5!x15−....loge{1+x2(x+3x3+152x5+.....)} ⇒x→0limx3−3!x9+5!x15−....loge(1+x3)=f(0) [on neglecting higher power of x in x2tanx ] ⇒x→0limx3−3!x9+5!x15−....x3−2x6+3x9−.....=f(0) ⇒1=f(0)