Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=(logcotxtanx)(logtanxcotx)-1 +tan-1 (4x/4-x2), then f'(2) is equal to
Q. If
f
(
x
)
=
(
l
o
g
co
t
x
t
an
x
)
(
l
o
g
t
an
x
co
t
x
)
−
1
+
t
a
n
−
1
4
−
x
2
4
x
, then
f
′
(
2
)
is equal to
2979
151
Continuity and Differentiability
Report Error
A
2
1
43%
B
−
2
1
28%
C
1
24%
D
−
1
5%
Solution:
f
(
x
)
=
(
l
o
g
co
t
x
t
an
x
)
(
l
o
g
t
an
x
co
t
x
)
−
1
+
t
a
n
−
1
4
−
x
2
4
x
=
l
o
g
co
t
x
l
o
g
t
an
x
⋅
l
o
g
co
t
x
l
o
g
t
an
x
+
t
a
n
−
1
(
4
−
x
2
4
x
)
=
(
−
l
o
g
t
an
x
2
)
(
l
o
g
t
an
x
2
)
+
t
a
n
−
1
(
4
−
x
2
4
x
)
=
1
+
t
a
n
−
1
(
4
−
x
2
4
x
)
∴
f
′
(
x
)
=
1
+
(
4
−
x
2
4
x
)
2
1
⋅
(
4
−
x
2
)
2
(
4
−
x
2
)
4
−
4
x
(
−
2
x
)
=
(
4
−
x
2
)
2
+
16
x
2
16
−
4
x
2
+
8
x
2
=
(
4
−
x
2
)
2
+
(
4
x
)
2
4
(
4
+
x
2
)
Hence,
f
′
(
2
)
=
0
+
(
8
)
2
4
(
4
+
4
)
=
64
30
=
2
1