Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= log cot x tan x ⋅ log tan x cot x-1+ tan -1 (x/√4-x2), x ∈(-2,2), then the value of 2 f prime(0)=
Q. If
f
(
x
)
=
lo
g
c
o
t
x
tan
x
⋅
lo
g
t
a
n
x
cot
x
−
1
+
tan
−
1
4
−
x
2
x
,
x
∈
(
−
2
,
2
)
, then the value of
2
f
′
(
0
)
=
____
362
147
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
1
Solution:
Let
a
=
lo
g
c
o
t
x
tan
x
lo
g
t
a
n
x
cot
x
−
1
and
b
=
tan
−
1
4
−
x
2
x
⇒
f
(
x
)
=
a
+
b
a
=
lo
g
c
o
t
x
tan
x
lo
g
t
a
n
x
cot
x
−
1
=
lo
g
c
o
t
x
tan
x
l
o
g
t
a
n
x
c
o
t
x
1
=
l
o
g
(
c
o
t
x
)
l
o
g
(
t
a
n
x
)
2
=
l
o
g
t
a
n
x
1
l
o
g
(
t
a
n
x
)
2
=
−
l
o
g
(
t
a
n
x
)
l
o
g
(
t
a
n
x
)
2
=
1
b
=
tan
−
1
4
−
x
2
x
Let
θ
=
sin
−
1
2
x
,
−
2
<
x
<
2
⇒
x
=
2
sin
θ
⇒
b
=
tan
−
1
4
−
4
s
i
n
2
θ
2
s
i
n
θ
=
tan
−
1
2
c
o
s
θ
2
s
i
n
θ
=
tan
−
1
(
tan
θ
)
,
−
2
π
<
θ
<
2
π
=
θ
=
sin
−
1
2
x
⇒
f
(
x
)
=
1
+
sin
−
1
2
x
⇒
f
′
(
x
)
=
1
−
2
x
2
1
⋅
2
1
⇒
f
′
(
x
)
=
4
−
x
2
1
⇒
f
′
(
0
)
=
4
−
0
1
=
2
1
⇒
2
f
′
(
0
)
=
1