Q.
If f(x)=log100x(−x2log10x+2);g(x)={x}; where {x} denotes the fractional part of x. If the function (fog)(x) exists, then the maximum possible range of g(x) is
1904
215
Relations and Functions - Part 2
Report Error
Solution:
f(x)=log100x(−x2log10x+2);g(x)={x};
For fog (x) to exist.
Range of f(x) must be subset of domain of f(x)
Now, range f(x)=[0,1)
For domain of f(x):100x>0,=1 and −x2log10x+2>0 ⇒x>0;x=1001 and xlog10x+1<0 ⇒x>0,x=1001log10x<−1 ⇒x>0;x=1001;x<101 ⇒x∈(0,101)−{1001}. ∴ Maximum possible range of f(x)=(0,101)−{1001} =(0,1001)∪(1001,101)
i.e., (0,10−2)∪(10−2,10−1).