Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= log ( (1-x/1+x) ), then f(a)+f(b) is equal to:
Q. If
f
(
x
)
=
lo
g
(
1
+
x
1
−
x
)
,
then
f
(
a
)
+
f
(
b
)
is equal to:
1619
154
KEAM
KEAM 2000
Report Error
A
f
(
a
+
b
)
B
f
(
ab
)
C
f
(
1
+
ab
a
+
b
)
D
0
E
f
(
1
+
ab
a
−
b
)
Solution:
f
(
x
)
=
lo
g
(
1
+
x
1
−
x
)
Now,
f
(
x
)
=
lo
g
(
1
+
a
1
−
a
)
,
f
(
b
)
=
lo
g
(
1
+
b
1
−
b
)
∴
f
(
a
)
+
f
(
b
)
=
lo
g
(
1
+
a
1
−
a
)
+
lo
g
(
1
+
b
1
−
b
)
=
lo
g
(
1
+
a
1
−
a
.
a
+
b
1
−
b
)
=
lo
g
(
1
+
a
+
b
+
ab
1
−
a
−
b
+
ab
)
=
lo
g
(
1
+
(
1
+
ab
a
+
b
)
1
−
(
1
+
ab
a
+
b
)
)
=
f
(
1
+
ab
a
+
b
)