Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = begincases (log (1+2ax)-log (1-bx)/x) &, text x ≠ 0 [2ex] k &, text x = 0 endcases continuous at x = 0 , then value of k is
Q. If
f
(
x
)
=
⎩
⎨
⎧
x
l
o
g
(
1
+
2
a
x
)
−
l
o
g
(
1
−
b
x
)
k
,
x
=
0
,
x
=
0
continuous at
x
=
0
, then value of
k
is
1866
201
MHT CET
MHT CET 2012
Report Error
A
b
+
a
B
b
−
2
a
C
2
a
−
b
D
2
a
+
b
Solution:
Given,
f
(
x
)
=
{
x
l
o
g
(
1
+
2
a
x
)
−
l
o
g
(
1
−
b
x
)
,
k
x
=
0
x
=
0
is continuous at x = 0
∴
f
(
0
)
=
x
→
0
lim
x
lo
g
(
1
+
2
a
x
)
−
lo
g
(
1
−
b
x
)
(
0
0
form
)
⇒
k
=
x
→
0
lim
+
1
2
a
x
+
1
1
(
2
a
)
−
1
−
b
x
1
(
−
b
)
(by ‘L’ Hospital’s rule)
⇒
k
=
0
+
1
2
a
+
1
−
0
b
=
2
a
+
b