Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) is the antiderivative of (1+2 tan x( tan x+ sec x))(1/2) and f((π/6))= log 2, then the value of f(0) is
Q. If
f
(
x
)
is the antiderivative of
(
1
+
2
tan
x
(
tan
x
+
sec
x
)
)
2
1
and
f
(
6
π
)
=
lo
g
2
, then the value of
f
(
0
)
is
80
153
Report Error
Answer:
0
Solution:
f
(
x
)
=
∫
(
1
+
2
tan
x
(
tan
x
+
sec
x
)
)
2
1
d
x
=
∫
(
1
+
2
tan
2
x
+
2
tan
x
sec
x
)
2
1
d
x
=
∫
(
1
+
tan
2
x
+
tan
2
x
+
2
tan
x
sec
x
)
2
1
d
x
=
∫
(
sec
2
x
+
tan
2
x
+
2
tan
x
sec
x
)
2
1
d
x
=
∫
(
(
sec
x
+
tan
x
)
2
)
2
1
d
x
=
lo
g
(
sec
x
+
tan
x
)
+
lo
g
sec
x
+
c
f
=
(
6
π
)
=
lo
g
2
⇒
lo
g
3
2
(
3
2
+
3
1
)
+
c
=
lo
g
2
⇒
c
=
0
f
(
x
)
=
lo
g
(
sec
x
(
sec
x
+
tan
x
))
⇒
f
(
0
)
=
lo
g
((
1
)
(
1
+
0
))
=
0