f(x)=21[f(x).f(x1)−f(x1)−f(x)]⇒f(x).f(x1)=f(x)+f(x1) ...(1)
Let f(x)=a0xn+a1xn−1+....+an−1x+an(a0=0)
Putting in (1), we get (a0xn+a1xn−1+....+an−1x+an) (xna0+xn−1a1+.....+xan−1+an)
= a0xn+a1xn−1+....+an−1x+an+xna0+xn−1a1+....+xan−1+an
Comparing the various co-efficients, we get a0an=a0⇒an=1 [∵a0=0] a0an−1+ana1=a1⇒a0an−1=0⇒an−1=0,
Similarly an−2=0,........,a1=0
Again a02+an2+a12+an−12+......=2an ⇒a02+an2=2an⇒a02=2−1=1⇒a0=±1
Hence f(x)=xn+1 or −xn+1
Now f(2)=2n+1 = 17 ⇒2n=16=24⇒n = 4
Clearly, f(x)=−xn+1 is not possible. [∵f(2)=−2n+1=17⇒−2n = 16 not possible] ∴f(x)=x4+1∴f(5)=54 + 1 = 625 + 1 = 626.