Let f(x)=a0xn+a1xn−1+a2xn−2+…+an−1x+an
Then, f(x)⋅f(x1)=f(x)+f(x1) ⇒(a0xn+a1xn−1+…+an) (xna0+xn−1a1+…+an)
On comparing the coefficient of xn, we have a0an=a0 ⇒an=1
Comparing the coefficient of xn−1, we have ⇒a0an−1+ana1=a1 ⇒a0an−1+a1=a1
[ as an=1] ⇒a0an−1=0 ⇒an−1=0
[ as a0=0]
Similarly, an−1=an−2=…=a1=0
and a0=±1 ∴f(x)=1±xn f(4)=1±4n=257 ⇒4n=256 ⇒4n=256 ⇒4=4 f(x)=1+x4
So, f(3)=1+34=82