We have the cubic polynomial function f(x)=ax3+bx2+cx+d f(1)=−1=a+b+c+d f(2)=18=8a+4b+2c+d 19=7a+3b+c(1)
Therefore, f′(x)=3ax2+2bx+c f′(−1)=0 3a−2b+c=0 3a+c=0 c=−3a(2)
and f′′(x)=6ax+2b f′′(0)=0 b=0(3)
Substituting Eqs. (2) and (3) in Eq. (1), we get 19=7a−3a ⇒a=419
Therefore, c=−457
and d=−1−a−b−c =−1−419−0−457 =−4(4+19+57)=−480
Therefore, f(x)=419x3−457x−480 =41(19x3−57x−80)
and f′(x)=0⇒41(57x2−57)=0 (x2−1)=0⇒x=1,−1 f′(x)=457(x−1)(x+1)
Therefore, f′′(x)=(257)2x ⇒f′′(1)>0
The point of minima is x=1. Therefore, f(1)=41(19−57−80)=259=2−59
Point (1,2−59) distance from point (−1,2) is (1+1)2(2−59−2)2=4+4(63)2 =21632+42
Hence, f(x) is increasing, that is, x≥1.