Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) is a continuous function and displaystyle ∫ x2x4 t3 f (t) d t=sin2π x , then f(1) is equal to
Q. If
f
(
x
)
is a continuous function and
∫
x
2
x
4
t
3
f
(
t
)
d
t
=
s
in
2
π
x
, then
f
(
1
)
is equal to
1593
182
NTA Abhyas
NTA Abhyas 2020
Integrals
Report Error
A
1
26%
B
−
1
3%
C
π
64%
D
−
π
8%
Solution:
Differentiating using Leibnitz rule, we get,
x
12
f
(
x
4
)
4
x
3
−
x
6
f
(
x
2
)
2
x
=
2
π
cos
π
x
Putting
x
=
1
⇒
4
f
(
1
)
−
2
f
(
1
)
=
2
π
⇒
2
f
(
1
)
=
2
π
⇒
f
(
1
)
=
π