Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=∫ (3( ln x)2+( ln x)4/x(1+( ln x)2-( ln x)3)2) d x and f(1)=0, then the value of |3 f(e2)| is equal to
Q. If
f
(
x
)
=
∫
x
(
1
+
(
l
n
x
)
2
−
(
l
n
x
)
3
)
2
3
(
l
n
x
)
2
+
(
l
n
x
)
4
d
x
and
f
(
1
)
=
0
, then the value of
∣
∣
3
f
(
e
2
)
∣
∣
is equal to
216
148
Integrals
Report Error
Answer:
8
Solution:
Put
ln
x
=
t
⇒
d
x
=
e
t
d
t
=
∫
(
1
+
t
2
−
t
3
)
2
3
t
2
+
t
4
d
t
=
∫
t
6
(
t
3
1
+
t
1
−
1
)
2
(
3
t
2
+
t
4
)
d
t
=
∫
(
z
t
3
1
+
t
1
−
1
)
t
4
3
+
t
2
1
d
t
=
−
∫
z
2
d
z
=
z
1
+
C
⇒
f
(
x
)
=
1
+
(
l
n
x
)
2
−
(
l
n
x
)
3
(
l
n
x
)
3
+
C
∴
f
(
x
)
=
0
+
C
⇒
C
=
0
∴
f
(
x
)
=
1
+
(
l
n
x
)
2
−
(
l
n
x
)
3
(
l
n
x
)
2
⇒
3
f
(
e
2
)
=
−
8