Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=∫1x ( log t/1+t+t2) d x, ∀ x ≥ 1 then f(x)
Q. If
f
(
x
)
=
∫
1
x
1
+
t
+
t
2
l
o
g
t
d
x
,
∀
x
≥
1
then
f
(
x
)
127
176
Integrals
Report Error
A
f
(
x
1
)
B
f
(
x
2
1
)
C
f
(
x
2
)
D
−
f
(
x
1
)
Solution:
Given
f
(
x
)
=
1
∫
x
1
+
t
+
t
2
l
o
g
t
d
x
⇒
f
(
x
1
)
=
1
∫
1/
x
1
+
t
+
t
2
l
o
g
t
d
x
Let
x
=
t
1
⇒
d
x
=
t
2
−
d
t
⇒
f
(
x
1
)
=
1
∫
x
1
+
t
1
+
t
2
1
l
o
g
t
1
(
−
t
2
1
)
d
t
=
1
∫
x
1
+
t
+
t
2
l
o
g
t
d
t
=
f
(
x
)