Q.
If f(x),g(x) and h(x) are three polynomials of degree 3 then
ϕ(x)=∣∣f′(x)f′′(x)f′′′(x)g′(x)g′′(x)g′′′(x)h′(x)h′′(x)h′′′(x)∣∣is a polynomial of degree
We have ϕ′(x)=∣∣f′′(x)f′′(x)f′′′(x)g′′(x)g′′(x)g′′′(x)h′′(x)h′′(x)h′′′(x)∣∣+∣∣f′(x)f′′′(x)f′′′(x)g′(x)g′′′(x)g′′′(x)h′(x)h′′′(x)h′′′(x)∣∣+∣∣f′(x)f′′(x)fiv(x)g′(x)g′′(x)giv(x)h′(x)h′′(x)hv(x)∣∣ =0+0+∣∣f′(x)<br/>f′′(x)0g′(x)g′′(x)0h′(x)h′′(x)0<br/>∣∣=0
since f,g,h are polynomials of degree 3,fiv(x)=giv(x)=hiv(x)=0 ⇒ϕ(x) must be a constant.