Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=f(π +e-x) and ∫ limitseπ f(x) d x=(2/e+π), then ∫ limitseπ x f(x) d x is equal to
Q. If
f
(
x
)
=
f
(
π
+
e
−
x
)
and
e
∫
π
f
(
x
)
d
x
=
e
+
π
2
, then
e
∫
π
x
f
(
x
)
d
x
is equal to
1858
243
KCET
KCET 2014
Integrals
Report Error
A
2
π
+
e
20%
B
2
π
−
e
29%
C
π
−
e
23%
D
1
28%
Solution:
Given,
f
(
x
)
=
f
(
π
+
e
−
x
)
and
e
∫
π
f
(
x
)
d
x
=
e
+
π
2
...(i)
Let
I
=
e
∫
π
x
f
(
x
)
d
x
=
e
∫
π
(
e
+
π
−
x
)
f
(
e
+
π
−
x
)
d
x
=
e
∫
π
(
e
+
π
)
f
(
e
+
π
−
x
)
d
x
−
e
∫
π
x
f
(
e
+
π
−
x
)
d
x
=
e
∫
π
(
e
+
π
)
f
(
x
)
d
x
−
∫
e
π
x
f
(
x
)
d
x
[from Eq.(I)]
⇒
I
=
(
e
+
π
)
e
∫
π
f
(
x
)
d
x
−
I
⇒
2
I
=
(
e
+
π
)
×
e
+
π
2
[from Eq. (i)]
∴
I
=
1