Q.
If f(x)=1+e1/xe1/x for x=0 and f(0)=0, then at x=0 the function f(x) is
8149
199
J & K CETJ & K CET 2007Continuity and Differentiability
Report Error
Solution:
Given, f(x)=1+e1/xe1/x,f(0)=0 LHL=x→0−limf(x)=h→0limf(0−h) =h→0lim1+e−1/he−1/h=0 RHL=x→0+limf(x)=h→0limf(0+h) =h→0lim1+e1/he1/h=1
Since, LHL=RHL
So, f(x) is discontinuous at x=0.